
Biomicrofluidics 16, 014104 (2022); https://doi.org/10.1063/5.0077432 16, 014104

© 2022 Author(s).

Deep learning assisted mechanotyping
of individual cells through repeated
deformations and relaxations in undulating
channels  

Cite as: Biomicrofluidics 16, 014104 (2022); https://doi.org/10.1063/5.0077432
Submitted: 02 November 2021 • Accepted: 04 January 2022 • Published Online: 24 February 2022

Cody Combs, Daniel D. Seith,  Matthew J. Bovyn, et al.

COLLECTIONS

 This paper was selected as Featured

 This paper was selected as Scilight

ARTICLES YOU MAY BE INTERESTED IN

Robotic automation of droplet microfluidics
Biomicrofluidics 16, 014102 (2022); https://doi.org/10.1063/5.0064265

A perspective on magnetic microfluidics: Towards an intelligent future
Biomicrofluidics 16, 011301 (2022); https://doi.org/10.1063/5.0079464

Giardia purification from fecal samples using rigid spiral inertial microfluidics
Biomicrofluidics 16, 014105 (2022); https://doi.org/10.1063/5.0069406

https://images.scitation.org/redirect.spark?MID=176720&plid=1873341&setID=405122&channelID=0&CID=689257&banID=520755609&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=764d140b0b63b086fc3a944dbf3e573d8034d5ac&location=
https://doi.org/10.1063/5.0077432
https://aip.scitation.org/topic/collections/featured?SeriesKey=bmf
https://aip.scitation.org/doi/10.1063/10.0009812
https://doi.org/10.1063/5.0077432
https://aip.scitation.org/author/Combs%2C+Cody
https://aip.scitation.org/author/Seith%2C+Daniel+D
http://orcid.org/0000-0001-9331-4583
https://aip.scitation.org/author/Bovyn%2C+Matthew+J
https://aip.scitation.org/topic/collections/featured?SeriesKey=bmf
https://aip.scitation.org/topic/collections/scilight?SeriesKey=bmf
https://doi.org/10.1063/5.0077432
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0077432
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0077432&domain=aip.scitation.org&date_stamp=2022-02-16
https://aip.scitation.org/doi/10.1063/5.0064265
https://doi.org/10.1063/5.0064265
https://aip.scitation.org/doi/10.1063/5.0079464
https://doi.org/10.1063/5.0079464
https://aip.scitation.org/doi/10.1063/5.0069406
https://doi.org/10.1063/5.0069406


Deep learning assisted mechanotyping of
individual cells through repeated deformations
and relaxations in undulating channels

Cite as: Biomicrofluidics 16, 014104 (2022); doi: 10.1063/5.0077432

View Online Export Citation CrossMark
Submitted: 2 November 2021 · Accepted: 4 January 2022 ·
Published Online: 16 February 2022

Cody Combs,1 Daniel D. Seith,2 Matthew J. Bovyn,1 Steven P. Gross,1,3 Xiaohui Xie,4 and Zuzanna S. Siwy1,2,5,a)

AFFILIATIONS

1Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
2Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
3Developmental and Cell Biology, University of California Irvine, Irvine, California 92697, USA
4Department of Computer Science, University of California Irvine, Irvine, California 92697, USA
5Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, USA

a)Author to whom correspondence should be addressed: zsiwy@uci.edu

ABSTRACT

Mechanical properties of cells are important features that are tightly regulated and are dictated by various pathologies. Deformability
cytometry allows for the characterization of the mechanical properties at a rate of hundreds of cells per second, opening the way to
differentiating cells via mechanotyping. A remaining challenge for detecting and classifying rare sub-populations is the creation of a
combined experimental and analysis protocol that approaches the maximum potential classification accuracy for single cells. In order to
find this maximum accuracy, we designed a microfluidic channel that subjects each cell to repeated deformations and relaxations and pro-
vides a comprehensive set of mechanotyping parameters. We track the shape dynamics of individual cells with high time resolution and
apply sequence-based deep learning models for feature extraction. In order to create a dataset based solely on differing mechanical
properties, a model system was created with treated and untreated HL60 cells. Treated cells were exposed to chemical agents that perturb
either the actin or microtubule networks. Multiple recurrent and convolutional neural network architectures were trained using time
sequences of cell shapes and were found to achieve high classification accuracy based on cytoskeletal properties alone. The best model
classified two of the sub-populations of HL60 cells with an accuracy over 90%, significantly higher than the 75% we achieved with
traditional methods. This increase in accuracy corresponds to a fivefold increase in potential enrichment of a sample for a target population.
This work establishes the application of sequence-based deep learning models to dynamic deformability cytometry.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077432

I. INTRODUCTION

Mechanical properties of cells such as the ability to deform
when an external force is applied are directly linked to the structure
of a cell’s cytoskeleton. Changes in cytoskeleton have been correlated
with cellular differentiation,1 malignant transformation,2 formation
of biofilms,3 and even COVID-19 pathology.4 Consequently, probing
mechanical properties offers a label-free method to learn about a
cell’s state such as its homeostasis or pathological conditions.

A multitude of techniques have been reported to probe the
mechanical properties of cells. Conventional methods include

atomic force microscopy,5,6 optical tweezers,7 and micropipette
aspiration.8 While these approaches are able to accurately measure
mechanical properties of single cells, their throughput of roughly
1–10 cell(s) per minute is significantly slower than the �10 000
cells per second achieved by most flow cytometers, which is needed
to determine heterogeneities in cell populations and for single cell
classification.

In recent years, various microfluidic-based methods have been
shown to measure the deformability of cells with significantly
improved throughput, closing the gap between flow cytometry and
mechanical phenotyping methods. In one class of methods, cells
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are squeezed through constrictions smaller than the cell’s
diameter.9–12 The passage time of such strongly deformed cells has
been shown to depend on the cells’ mechanical properties, with a
faster passage corresponding to more deformable cells. This
approach was applied to different cell lines, including cancer cells,
stem cells, and red blood cells.11,13–21 The transit through the
channel is measured by recording electrical impedance or optical
signals that enable one to relate parameters like transit time to the
deformability and, in certain cases, measure quantities like Young’s
modulus.22 However, often with these methods, it is difficult to dis-
entangle deformation and surface friction.

Another class of microfluidic approaches utilizes channels that
are wider than the cells to be analyzed, where the passing cells are
subjected to hydrodynamic forces, and deformations of individual
cells are probed optically. Two notable approaches include exten-
sional deformability cytometry (xDC)23 and real-time deformability
cytometry (RT-DC).24 In xDC, a cross-channel is used to deform
cells at ultrafast flow rates reaching � 1000 μl min�1. xDC has been
used to classify malignant pleural effusions, differentiate multiple
stem cells, and identify transitions in the cell cycle. The authors
showed that deformation kinetics, among other features, are impor-
tant in the classification of induced pluripotent stem cells
(iPSCs).25,26 Utilizing their full set of rheological and morphologi-
cal features, Masaeli et al. demonstrated the ability to classify
between iPSCs and differentiated iPSCs with accuracies up to 95%
using support vector machines (SVMs).26 RT-DC, which is based
on a straight, narrow microfluidic channel, operates at significantly
lower flow rates than xDC (�1 μl min�1) and induces constant
shear stresses allowing cells to reach a steady state deformation.
RT-DC quantifies deformability using steady-state images of the
deformed cells captured at the end of the microfluidic constriction
and is linked to a physical model to calculate Young’s modulus.27

RT-DC has also been recently extended to probe the cells’ deforma-
tion kinetics as they approach steady state.28 RT-DC has been
shown to classify reticulocytes from mature red blood cells with an
unsupervised approach with a mean accuracy of � 74%.29

While these approaches have shown great promise and success
for a variety of problems, the classification of the cell populations
relies heavily on morphological and size-based features. While
these features are useful in practical applications, the discriminative
power of deformability cytometry on cell populations that differ in
mechanical properties alone has not been fully explored.
Additionally, the use of deep learning models, particularly convolu-
tional and sequence-based models, provides higher classification
potential than traditional machine learning models.30,31 In this
paper, we propose to enhance classification accuracy by maximiz-
ing mechanotyping information through subjecting individual cells
to repeated deformations and relaxations by hydrodynamic forces
as well as through the application of deep learning methods. As the
videos are recorded with the time resolution of at least 11 000
frames per second, we can probe the deformation dynamics with
high precision. The dynamic observation reveals quantitative
insights into the deformation/relaxation processes and provides a
comprehensive mechanical fingerprint of each cell. The channel
contains a cavity flanked by two narrower regions,32 with widths
that at any position are wider than the cells to be analyzed. Our
technique operates at a throughput comparable to the throughput

of RT-DC that enables observations of hundreds of cells per
minute and yet probes the cells sufficiently slowly to observe cyto-
skeletal changes.33 Inducing repeated deformation and relaxation
by hydrodynamic forces is a natural progression on the way to
increase the fidelity of cells characterization and classification based
solely on mechanotyping.34,35

HL60 cells before and after treatment with either Cytochalasin
D (cytoD) or Nocodazole (Noco) were used as a model system to
probe the classification potential of our method. Both chemicals
were found to perturb HL60 deformability such that cytoD-treated
HL60 cells (HL60d) were more and Noco-treated HL60 cells
(HL60n) were less deformable than untreated HL60. Most impor-
tantly, cells belonging to the three sub-populations, HL60, HL60d,
and HL60n, have the same average size, thus enabling us to test our
classification strategy based on mechanical properties alone. Using
these sub-populations subjected our method to a very challenging
test, since classification is often aided by cells’ size.25,36

The analysis of the recordings was supported by machine
learning approaches with gradually increased levels of expressive
power. We show that the mechanotyping dynamic features our
method provides enable a significant increase in the classification
accuracy of the HL60 populations when compared to using any
single feature alone. We also calculated Shapley values, a technique
known from the economic game theory, to probe which deform-
ability parameters contributed most to the classification accu-
racy.37,38 A significant improvement in classification accuracy was
further observed when the time series of deformations was used as
an input into deep learning models such as recurrent neural net-
works (RNNs). Our deep learning methods utilizing time-based
sequences of features showed an increase in classification accuracy
to 90%, from the 75% accuracy we observed with the random forest
(RF). This increase in accuracy translates to an order of magnitude
increase in the potential ability to enrich a sample for a rare popu-
lation of cells (supplementary material, Note 1). Most importantly,
a convolutional neural network (CNN) was used in conjunction
with an RNN to utilize sequences of binary masks as input features.
We also discuss the trade-off between interpretability achieved with
more traditional machine learning approaches and accuracy that is
offered by deep learning. Not only has such a comparison not been
discussed before, deep learning has not been applied to deformabil-
ity cytometry for classification based solely on mechanical
properties.

II. METHODS

A. Cell culture

HL60 (ATCC CCL-240) cells were cultured in suspension
with Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented
with 10%(v/v) FBS (Fisher brand) and 1% (v/v) penicillin-
streptomycin and maintained in an incubator at 37 �C with 5%
CO2. Cells were passaged through dilution every 2–3 days to main-
tain a density between 105 and 106 cells ml�1. Prior to experiments,
cells were centrifuged at 112 relative centrifugal force (RCF) for
5 min and resuspended to concentrations of 2–3�106 cells ml�1 in
PBS with 1% (w/v) methylcellulose (Spectrum 4000CP).

To create sub-populations of HL60 cells with perturbed actin
and microtubule networks, cells were incubated for 10 min in 1 μM
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cytochalasin D (cytoD) (Sigma) or for 1 h in 10 μM nocodazole
(Noco) which had been diluted 10x from stock solution with
dimethyl sulfoxide (DMSO).39 Cells were spun down at 112 RCF
for 5 min and resuspended in 1% (w/v) methylcellulose solution.

B. Channel preparation and data acquisition

Microfluidic channels were prepared with a master mold
using standard photolithography with negative SU-8 photoresist
(Kayaku Advanced Materials Inc.). The channel used in the experi-
ments was 150 μm long, with three equal length sub-regions
(50 μm) with widths of 25, 50, and 25 μm. The height of the device
was 20 μm along the whole length. The full chip geometry can be
found in the supplementary material (Note 2). 184-Sylgard polydi-
methyl siloxane (PDMS) was pipetted over the SU-8 master and
baked for � 4h at 75 �C. Channel inlets and outlets were created
with a 1.5 mm biopsy punch. PDMS channels were cleaned and
dried with isopropyl alcohol, methanol, and water before being
bonded to a glass coverslip using a corona discharge wand (ETP).
Methanol was used last before drying due to its low boiling point
to ensure no residual alcohol remained in the device. Bonded
PDMS/glass samples were heated for an additional hour at 90 �C to
promote further adhesion.

Cells were suspended in methylcellulose solution to prevent
settling to the bottom of the container. The solution was then
pumped through a microfluidic channel using a Genie-plus syringe
pump (Kent Scientific) at a rate of 1 μl min�1. Cells were focused
laterally in the channel using a sheath flow geometry with a flow
rate of 2 μl min�1. The sheath and core flows were allowed to
equilibrate for 10 min before data were taken. Cells were illumi-
nated using a high-powered Red Amber (613 nm) 36 W LED array
(PT-121-RAX Luminus, Inc.) and imaged at 10� magnification in
brightfield on an inverted microscope. A Chronos 1.4 high-speed
camera (Krontech) imaged passing cells at a frame rate of
� 11 000 fps with 1 ms exposure time and a resolution of
880� 140 to encapsulate the full channel length. The size of each
pixel is 0:26 μm=pixel. Maximum blurring induced by cell move-
ment is � 0:1 μm. Eight second videos were recorded and saved
which require � 15 min to offload from camera memory. In order
to ensure model generalizability, in total, �3500 cell trajectories
were recorded and analyzed. The data presented were collected
over 10 technical replicates of HL60 (4 biological replicates), 8 tech-
nical replicates of HL60d (4 biological replicates), and 6 technical
replicas of HL60n (2 biological replicates).

C. Detection, segmentation, and tracking

A convolutional neural network (CNN) was trained to identify
frames containing cells to reduce the computational time of pro-
cessing the large number of frames generated by the high-speed
camera. Frames labeled as containing cells were then passed to a
segmentation MASK-RCNN network that was used to segment
cells from images and fit masks. MASK-RCNN can learn to accu-
rately segment cells with differing focusing conditions and is able
to segment multiple cells in a single frame. The Matterport imple-
mentation40 was used with Tensorflow 2.2 due to its wide code
availability and its support for Tensorflow. The network was
trained using a NVIDIA 1070TI on a hand labeled dataset of �300

images of HL60 cells across multiple independent experiments
using VGG Image annotator 1.0. The network was initialized with
weights from the COCO dataset and the architecture was modified
in order to increase the output resolution of the predicted masks.
The training schedule consisted of training head layers for 20 epochs
at a learning rate (LR) of 10�3, 50 epochs training 4þ layers at
LR/10, and 50 epochs training all layers at LR/10. Training curves
and further details can be found in the supplementary material
(Note 3). A custom tracking algorithm was written in python to
follow individual cell trajectories.

D. Calculation of features

Detected events with impossible trajectories (i.e., no event will
begin in the middle of the channel) were discarded. To ensure the
fits are accurate, a convex hull was fit to the cell mask and events
were filtered out where a single frame had a ratio . 1:1 between
the original and convex hull fit. Detected particles with radii equal
to three standard deviations from the mean were not included in
the analysis, as they often contained cell/channel debris or clumps
of multiple cells. Ellipses were fit to the detected masks and the
aspect ratio of the ellipse was used to describe the cell deformation,
AR. A full description of deformation parameters can be found in
the supplementary material (Note 4).

E. Comsol simulation

A finite element simulation was conducted using Comsol
Multiphysics 5.3 to simulate the velocities and stresses experienced
in the undulating channel. A simplified 3D model of the channel
was modeled in the laminar flow module using the Navier–Stokes
equation with creep flow in the steady state. An extra fine meshing
was chosen for the area near the narrow section of the channel,
and normal meshing was chosen for the reservoir.

F. Machine learning model training

Of all the cell trajectories recorded, 3552 were suitable for clas-
sification. They were distributed as 1114 trajectories of HL60, 1122
trajectories of HL60d, and 1316 trajectories of HL60n.

The RF model and SVM were created and trained using
python 3.6 and scikit-learn. The data were standardized, shuffled,
and split according to the following ratio: 70:15:15 for train, valida-
tion, and test, respectively.

The GRU and the CNN-GRU models were created and trained
in python 3.6 using Keras and Tensorflow 2.2 libraries. The hyper-
parameters were optimized over 175 epochs using the test set. Model
performance was assessed using a hold-out test set, in addition to
fivefold cross-validation. Additional details on both model architec-
tures can be found in the supplementary material (Notes 5 and 6).

G. Data preprocessing for sequential models

Sequences of aspect ratio, perimeter, deformability, and area
were selected as inputs for the GRU model. Data previously filtered
were first aligned so that all sequences started and ended at a true
x-position of �30 and 170 μm, respectively. Data were then padded
to length 50 and were shuffled and split according to the following
ratio: 70:15:15 for train, validation, and test, respectively.

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 16, 014104 (2022); doi: 10.1063/5.0077432 16, 014104-3

© Author(s) 2022

https://www.scitation.org/doi/suppl/10.1063/5.0077432
https://www.scitation.org/doi/suppl/10.1063/5.0077432
https://www.scitation.org/doi/suppl/10.1063/5.0077432
https://www.scitation.org/doi/suppl/10.1063/5.0077432
https://aip.scitation.org/journal/bmf


For the sequential models using image data, CNN-GRU, masks
were first cropped to 96� 96. An ellipse fitted to the mask shape
was created using scikit-image and added to the second image
channel. Each sequence of these two-channel images was padded to
length 50. The data were shuffled and split according to the follow-
ing ratio: 70:15:15 for train, validation, and test, respectively.

H. Code availability

The python scripts implemented for data processing and
training machine learning models are available at https://github.
com/siwylab/time-series-dc.

III. RESULTS AND DISCUSSION

A. Channel design and data acquisition

We designed a microfluidic channel that subjects individual
cells to repeated compressions and relaxations. The multiple defor-
mations of the cells are induced by the channel shape, specifically
the presence of a cavity and two narrow zones. The varying channel
width is expected to create inhomogeneous velocity profiles leading
to temporal changes in the cells’ shape.41 To test this channel design
for mechanotyping, we pumped a suspension of HL60 cells
(ATCC-240) in methylcellulose (1% w/v) solution through a channel
of consecutive constrictions of length equal to 50 μm (a total length
of 150 μm) and widths of 25, 50, and 25 μm at a flow rate of
1 μl min�1. The more viscous methylcellulose solution induces larger
deformations than buffer solution and prevents sedimentation of
cells. Sheath flow focusing was used to ensure that all cells passed
through the channel along its center axis and experienced the same
forces. The microfluidic chip was placed on a 10� magnification
inverted microscope. To enable probing dynamics of cells’ shape at
this high flow rate, we customized the microscope to allow for high-
speed imaging by replacing the light source with a high-powered
LED array and accompanying 3D printed mount [Fig. 1(a)]. A high-
speed camera was adapted to fit the microscope, and videos of trans-
locating cells were recorded at 11 000 frames per second, resulting in
� 30 data points over 150 μm channel and revealing the shape
dynamics as a cell moves along the channel axis.

After videos had been collected, the data were processed with
a number of python scripts (supplementary material, Note 7). The
first script encompasses a lightweight CNN that filters out empty
frames and reduces the amount of data to be processed by � 80%.
Next, we employed a modified architecture of the Matterport40

implementation of Mask-RCNN,42 which is used to detect cell
regions and their associated mask. Our version of Mask-RCNN is
trained on 300 hand-labeled images of cells with varying levels of
focus (supplementary material, Note 3). The masks detected by this
network are then processed using a custom tracking algorithm to
find trajectories of individual cells. Figure 1(b) shows subsequent
snapshots of one cell as it passes through the channel.
MASK-RCNN enables us to track multiple cells in the same frame,
allowing a high density of cells (5� 106 cells ml�1 ) to be used in
the experiments. We found that the undulating channel design
results in complex dynamics of the cell’s shape and leads to regions
of differing deformations. Specifically, the cell underwent a strong
deformation at the entrance of the channel and in the first narrow

constriction; the cell then relaxed to a spherical shape in the cavity
and started to deform again when approaching the second narrow
constriction. As seen in Fig. 1(d), we define the regions where the
cell undergoes deformation as region 1 (R1) and region 3 (R3). The
regions where the cell undergoes relaxation are denoted as region 2
(R2) and region 4 (R4).

We find that the shape of the deformed cells in our device can
best be described as an ellipse where the deformation (D) is defined as
the aspect ratio (AR) of the two axes of the ellipse: the axis parallel to
the channel axis and the perpendicular axis [Fig. 1(c)]. The relative
deformability (rD) is the difference between D at a given point in the
trajectory and D in the cavity, where the cells undergo no deformation.
rD ¼ 0 corresponds to lack of deformation relative to unperturbed cell
shape, whereas rD . 0 corresponds to an extension along the channel
axis. Figure 1(d) summarizes how the magnitude of AR evolves as the
cell shown in Fig. 1(b) passes through the channel. In order to qualita-
tively understand the deformation trace, we performed a computational
fluid dynamics simulation with COMSOL multiphysics in a cell-free
undulating channel using the Navier–Stokes equations with creep flow
at experimental flow rates. Shear stress in different parts of the channel
can be analyzed through the derivative of velocity in the center of the
channel with respect to the axial position shown in Fig. 1(d). The cells
experience a large velocity gradient at the entrance of the channel,
leading to large stresses and deformations.

For the single cell trace shown in Fig. 1(d), we observe a peak
deformation of AR ¼ 1:49 in the first region (R1), marked in red.
The velocity gradient then reaches a steady state value within the
first narrow constriction (10–50 μm) and the cell deformation
decreases. Before the cell can reach a steady state deformed shape,
it enters the cavity where the velocity gradient begins to decrease
and then again rapidly increases. The cell returns to a spherical
shape, AR ¼ 1, where dv=dx ¼ 0, which occurs at � 75 μm. The
cell then begins to deform again due to the velocity gradient at the
entrance of the second narrow constriction, reaching a second peak
deformation of AR ¼ 1:30 in region three (R3). The maximum
deformation observed in the second constriction is lower than the
maximum deformation measured in the first constriction. We
believe this is because the cell is subjected to positive shear stresses
over a relatively short time and distance when transitioning from
the cavity to the second narrow region, as compared to the transi-
tion from the bulk channel to the first narrow constriction
entrance. The distance from the middle cavity, where the shear
stress is zero, to the position of peak deformation (and maximum
positive shear stress) in the second narrow region is only 25 μm,
whereas at the initial inlet the cell begins deforming from positive
shear stresses � 50 μm away from the entrance. Figure 2(a) shows
the values of AR for � 1200 HL60 cells examined in the same con-
ditions. The same trend for all cells has been observed: the cells
reached the maximum deformations in the first narrow zone,
relaxed to a sphere in the cavity, and underwent another deforma-
tion in the second constriction.

Taking advantage of the time series of cells’ positions and
shapes, we also quantified the dynamics of deformation and relaxa-
tion. To this end, we used a linear model to fit the trace from the
peak deformation in the first narrow zone to the position where the
cell relaxes to a spherical shape in the cavity (R2), resulting in a slope
of �8:71� 10�3 μm�1. The slope describes relaxation dynamics, and
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we refer to it as R2 slope. A similar analysis can be performed for the
cell entering the second narrow zone by fitting a line between
the spherical shape in the cavity to the maximum deformation in
the second narrow zone, obtaining a value of 9:75� 10�3 μm�1.
This slope, called R3 slope, describes the deformation dynamics.
Figure 2(b) shows example fits of rD, R2, and R3 slopes to a trace of
AR evolution for a single cell passing through a channel.

B. Application of the undulating channel to probe
perturbation of actin and microtubule networks

In order to evaluate the sensitivity of our method to detect
cytoskeletal perturbations, we continued the experiments with HL60

cells and treated them with cytochalasin D (cytoD) and Nocodazole
(Noco). These two chemicals have been previously used to create
model populations of HL60 that allowed researchers to evaluate the
performance of different mechanotyping techniques.23,24 CytoD dis-
rupts actin polymerization43 and has been previously shown to
increase deformability of HL60.22,24,39 Noco targets microtubules
causing rapid filament decomposition. For HL60 cells, Noco has pre-
viously been found to decrease the ability to deform.39 Perturbing
different components of the cytoskeleton allowed us to test whether
the deformation/relaxation processes from our channels and the
chosen flow rate are able to measure changes in whole cell deforma-
tion after actin and microtubules disturbance.33 The three popula-
tions of HL60 cells, untreated, CytoD-treated, and Noco-treated,

FIG. 1. Principles of repeated mechanotyping. (a) Channel design utilizing sheath flow, a high-powered LED, and a microscope. The microfluidic channel that enables
characterization and classification contains a cavity placed between two narrow zones. (b) Data are captured by a high-speed camera, creating videos at 11 k fps. Cell
borders are detected and fit using Mask-RCNN. (c) The cell deformation, AR, was quantified as the ratio of two axes of an ellipse that approximates the cell’s shape. (d)
(Top) The aspect ratio vs position relative to channel entrance of a single cell as it passes through the channel. (Bottom) COMSOL simulation showing the derivative of
velocity vs channel position, which is proportional to the shear stress. Region 1 (R1) and Region 3 (R3), denoted by red and yellow regions, are where the cells undergo
deformation. Region 2 (R2) and Region 4 (R4), denoted by green and blue regions, are where the cells undergo relaxation.
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were suspended in methylcellulose solution and separately passed
through our microfluidic channel. After post-processing, passages of
more than 1000 cells of each sub-population were captured.
Recordings were taken over 10 technical replicates of HL60 (4 bio-
logical replicates), 8 technical replicates of HL60d (4 biological repli-
cates), and 6 technical replicas of HL60n (2 biological replicates).
The repeated experiments and the amount of cells measured show
consistent trends and enable statistical analysis of the various mea-
sured parameters across the populations.

Figures 3(a) and 3(b) show the rD in the two narrow zones
and the two slopes for the three populations [Figs. 3(c) and 3(d)]
of HL60 cells. The magnitudes of rD are consistently the highest
for the cytoD-treated population, which confirms that the method
is sensitive to actin network perturbations. The Noco-treated popu-
lations exhibit the lowest mean rD, albeit with a larger variability
than the other two populations. These findings are in agreement
with earlier reports that used the same cell line and also observed
increased (decreased) deformability of the cytoD (Noco)-treated
HL60 populations.39

Interestingly, the R2 and R3 slopes that represent relaxation and
deformation dynamics, respectively, are also the greatest for the
cytoD-treated cells, suggesting that these cells are most responsive to
external forces. In contrast, the slopes for the less deformable,
Noco-treated populations are characterized by significantly smaller
magnitudes of both slopes than cytoD-treated and untreated HL60
cells. Though the HL60n had a slower response to the shear stress,

they relaxed to a spherical shape in the cavity and deformed again in
the second narrow region. It is important to note that the mean
diameter of the three populations is nearly identical (supplementary
material, Note 8), confirming the cells experienced similar forces.

While the mean values of deformation are significantly differ-
ent (Fig. 3, third column), there is a significant overlap between the
control HL60 and treated cell distributions (Fig. 3, contour plots).
This overlap makes it difficult to place an individual cell in one
population or the other. We find that no single feature alone can
provide accuracy significantly higher than 70% for single cell classi-
fication (supplementary material, Note 4). For example, rD1 alone
is able to classify between HL60 and HL60d populations at 72%
accuracy using a logistic regression model, while the same parame-
ter classifies HL60n with only 57% accuracy. The radius alone can
be used to classify up to 56% and 59% for HL60d and HL60n,
respectively, as expected from the nearly identical size of the popu-
lations. In Secs. III C–III E, we will show that in order to achieve
discrimination between the two populations on a single cells basis,
multiple features describing the cell deformation (Fig. 3) must be
considered simultaneously.

C. Feature extraction and machine learning model
comparison

Our next goal was to utilize the complete mechanotyping fin-
gerprint our method provides, to maximize classification accuracy.

FIG. 2. Single cell deformation traces. Deformation dynamics are shown for single cells translocating through the channel. The aspect ratio is determined by the best fit
ellipse to the cell mask. Deformation is calculated by the difference between the aspect ratio at a given point and the minimum aspect ratio in the cavity. The x-position
along the channel axis is determined by the centroid of the mask. Cells experience a smaller maximum deformation in the second narrow region, as compared to the first
narrow zone. Channel inlets and outlets are marked by a red dotted line. Deformation and relaxation occur twice within the channel. (a) Full population of single cell traces
of aspect ratio vs position for untreated HL60 cells. (b) Single cell example of parameters that are determined: relative maximum deformations (rD1 and rD2) in the two
narrow zones as well as relaxation and deformation slopes (R2 slope and R3 slope).
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FIG. 3. Comparison of measured deformability features between untreated and treated HL60 cells. (a) Contour plot of maximum rD in the first narrow zone (R1) for
untreated, cytoD-treated, and HL60n cells. The outer contour represents 50% density and the center contour represents 90% density. The mean of each population is
reported where the reported error is the standard error of the mean. (b) Contour plots of maximum rD in the second narrow region (R3). (c) Linear fit slope from maximum
deformation in the first narrow region (R1) to relaxation to minimum deformation in cavity (R2). (d) Linear fit slope from relaxed state in cavity (R2) until maximum
deformation in the second narrow region (R3).
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As mentioned above, the three populations chosen were nearly
identical in size; thus, the differences in mechanical properties
provide the only basis for classification. We first investigated the
ability of traditional machine learning models to distinguish the
two pairs of sub-populations, HL60 vs HL60d and HL60 vs HL60n.
To provide a baseline for classification potential, features were first
manually extracted from the individual raw time-series data as seen
in Fig. 2. A full list of extracted parameters can be found in the
supplementary material (Note 4). These derived features were used
to train a random forest classification model44–46 (RF), which has
been previously employed for classifying cytometry data.47 The
random forest models were implemented using scikit-learn and all
relevant hyperparameters were optimized. Other models such as
support vector machines (SVMs) were tested and showed similar or
less performance compared to RF (supplementary material,
Note 9). All models were trained across a mixture of multiple

biological and technical replicates, and accuracy results were
reported on a held on test set, in order to minimize bias.

We found that the trained RF model resulted in 75% classifi-
cation accuracy for HL60 vs HL60d and 71% classification accuracy
for HL60 vs HL60n [Fig. 4(a) and 4(c)]. The lower accuracy of the
model trained on HL60n can be attributed to the larger variation
in cell radius and deformation of Noco-treated cells. In the next
step, we wanted to understand the impact of different mechanotyp-
ing features on the RF model’s predictions. To this end, we utilized
Shapley values, which were developed for coalitional game theory
to inform how to fairly attribute success to the constituent parts.37

Thus, Shapley values can help us understand which features are
most informative for a single cell classification. In order to make
use of this method, the SHAP python library48 was employed in
conjunction with the trained RF model to attribute overall model
performance to individual features [Fig. 4(b)]. The values reported

FIG. 4. (a) Prediction results of random forest using derived mechanotyping features. (a) Confusion matrix of trained random forest predicting HL60 vs HL60d. The values
are normalized by the true label count. Accuracy is equal to the average of diagonal. (b) SHAP feature importance plot obtained using the trained RF model for the HL60
vs HL60d classification. (c) Confusion matrix for random forest trained on HL60 vs HL60n prediction. (d) SHAP feature importance for HL60 vs HL60n.
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in Figs. 4(b) and 4(d) represent the mean impact for an individual
feature in determining cell type. From the Shapley values, we find
that the R2 slope and rD1 have the most weight in deciding classifi-
cation between HL60 vs HL60d. Whereas for the HL60 vs HL60n
case, we find the R2 slope to have the highest impact, followed by
the radius. The introduction of Shapley values provides interpret-
ability of the mechanotyping data and demonstrates that the region
from peak AR to the relaxed state contains the most information
for classification. The analysis also revealed the importance of
another temporal feature, the R2 slope, in the classification
[Fig. 2(b)]. Based on these observations, we hypothesized that clas-
sification could be further improved by incorporating the sequen-
tial nature of a cell’s deformation into the model design. We then
decided to explore deep learning approaches to create a model that
can extract shape dynamics.

D. Deep learning for enhanced classification

RNNs are considered the optimal tools for handling sequential
data49 and are often used for translation and sequential prediction
tasks. We chose RNNs since they can approximate a function
describing the shape dynamics, which in our case is complex due
to the repeated deformations and relaxations caused by the non-
linear shear force [Fig. 1(c)]. In short, RNNs function by receiving
a single input from the full sequence, processing it, and feeding the
output into a copy of itself along with the next time step. We
implemented a variant of RNNs called the gated recurrent unit
(GRU) and used the sequential time-series features such as aspect
ratio, perimeter, and area as inputs to these models. The trained
GRU displayed a moderate increase in classification performance,
as seen in the confusion matrices in Figs. 5(b) and 5(c), resulting in

FIG. 5. Time-series neural networks applied to mechanotyping features. (a) Outline of recurrent neural network. Time-series deformation data are used as input into
GRUs. The output of the network predicts cell phenotype. (b) Confusion matrix for RNN trained on HL60 vs HL60d. (c) Confusion matrix for RNN trained on HL60 vs
HL60n.
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a 4% accuracy increase for HL60 vs HL60d and an 8% increase for
HL60 vs HL60n. Another RNN variant, Long Short-Term Memory
(LSTM), was tested but did not perform as well (supplementary
material, Note 10). GRU model architecture is presented in the
supplementary material (Note 5).

Since the application of RNNs yielded improved performance
(Fig. 5) compared to the RF models with manually derived features
(Fig. 4), we hypothesized that further improvement would require
an approach that is not based on hand-selected features (or their
combination). We, therefore, sought to improve accuracy by using
the binary masks as inputs, obtained using our video-processing
algorithm described above (see the sequence of blue shaded regions
in Fig. 1). Note that the sequence of the masks is the only input;
the derived deformation values from the masks are not used here.
To utilize the time series of masks, we have added a number of
convolutional layers to the GRU model (CNN-GRU).
Convolutional neural networks are known to be very well suited for
image-based classification tasks. A schematic diagram of the model
is shown in Fig. 6(a).

While CNN-RNNs traditionally use raw frames as inputs, here
our input complexity is drastically reduced since segmentation had
already been performed. Consequently, the network only learned
the shapes of the deformed cells, as opposed to differences in inter-
nal morphology or brightness contained in the raw images. Our
CNN-GRU architecture was refined by searching different filter
sizes for the CNN layers, changing the number of dense and GRU
layers, as well as adjusting the dropout rates. The optimized model
(supplementary material, Note 6) shows superior performance of
the CNN-GRU to both the RF and GRU models [Figs. 6(b)
and 6(c)]. Namely, the CNN-GRU enabled an increase in accuracy
by 11% to HL60 vs HL60d and an increase of 6% to HL60 vs
HL60n, resulting in final classification accuracies of 90% and 85%,
respectively. To investigate the potential of over-fitting, fivefold
cross-validation was performed in addition to the use of a train,
validation, and test split. The fivefold cross-validation resulted in
accuracies of 91.4+0.6% and 83.7+0.9%, with similar results
obtained for each training regime. The high validation set perfor-
mance shows the richness of the deformability dynamics and their
potential to aid in classification.

Finally, we wanted to confirm the importance of mechanotyp-
ing in the classification of HL60 sub-populations and asked
whether these cells could be distinguished only through their mor-
phological features, such as shape, prior to deformations. To this
end, a CNN was trained to classify HL60 vs HL60d and HL60 vs
HL60n sub-populations using masks from the channel cavity,
where no induced deformations are present. The best test accuracy
attainable was 65% for HL60 vs HL60d, indicating the poor classifi-
cation potential of the undeformed shape (supplementary material,
Note 11). On the other hand, when the same analysis was per-
formed for HL60 and HL60n, we saw a classification accuracy of
70%, indicating that the Noco treatment affected the cells’ unde-
formed shape, relative to the control HL60 population. The modi-
fied morphology of HL60n could have also contributed to the large
increase in accuracy when using the CNN-GRU. Combining
mechanotyping and deformation dynamics with the morphology of
cells could lead to improved accuracy of cells classification in cases
where the initial morphology differs.

E. Traditional ML with added morphological features
vs deep learning

To investigate the gain in performance obtained by deep
learning over traditional machine learning methods, we extended
the feature set of the manually derived features to include more
descriptors of morphology. The added features were calculated in
regions R1, R2, and R3 (Fig. 1) and included the central moments
of inertia along with Hu moments,50 which are a set of seven two-
dimensional moments that are invariant to rotations, scaling, and
translation (supplementary material, Note 12). Using these new
morphological descriptors, along with the previous derived features
(supplementary material, Note 4), a new SVM was trained and
optimized through a grid search of relevant parameters. The result-
ing confusion matrix on a held-out test set and SHAP plots were
calculated to understand the importance of these added features for
classification (supplementary material, Note 12). The classification
accuracy between HL60 and HL60d showed a marginal increase in
performance (1%) compared to the SVM trained without the
additional feature set. This, along with the poor classification of the
undeformed shapes (65%) (supplementary material, Note 11),
suggests that the HL60 and HL60d cells are very similar morpho-
logically and that deformation-based features are the most informa-
tive for classification. The classification of HL60 vs HL60n, on
the other hand, was moderately improved by the newly added
morphological features (�10%). The corresponding SHAP plot
(supplementary material, Note 12d) shows that the Hu moments in
R2, where the cells are most relaxed, had the highest average
impact on classification. The increase in classification accuracy
along with the importance of features in R2 suggests that both
morphological and deformation-based features contributed to the
classification of HL60 and HL60n.

While the addition of 30 new morphological features demon-
strated an increase in SVM classification accuracy, it is impossible
to ensure that our set of derived features forms a complete basis to
describe all possible shapes the cells assume throughout their defor-
mation and relaxation. Furthermore, we argue that features like the
Hu moments, although useful for increasing classification, offer
little interpretability and cannot be used to inform future physical
models. In cases where one is most concerned with classification
accuracy over interpretability, we found that deep learning, in par-
ticular, a network with both convolutional and recurrent layers,
outperforms traditional methods like an SVM. The classification
accuracy of the CNN-GRU was � 15% higher for HL60 vs HL60d
and � 4% for HL60 vs HL60n. We assert this increase in perfor-
mance is due to the ability of convolutional layers to generate a
more complete feature set, along with the recurrent layers to learn
the temporal dependence of the same features. It is important to
highlight that the use of deep learning models, like the CNN-GRU
described here, currently presents almost no interpretability.
However, this comes with a trade-off of improved classification
accuracy.

F. Increased accuracy leads to higher enrichment

To explore the implications of an increased classification accu-
racy, we considered a hypothetical case in which a researcher has a
heterogeneous sample of cells of many mechanical phenotypes and
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desires to characterize a sub-population within. The sub-population
constitutes at most a few percent of the total sample making other,
more conventional analysis, such as single cell RNA sequencing
and microscopy, difficult. We envision our method can be
implemented to identify the population of interest by combining
deformability characterization, classification, and in the future
sorting. In this case, classification accuracy determines how
effectively rare cells can be sorted out of the mixed sample. In the

supplementary material (Note 1), we derive a relationship between
the classification accuracy and the number of target cells recovered
in a sorted sample. We define the enrichment as the increase in the
concentration of target cells in the sorted sample. We find that
enrichment depends sensitively on classifier performance, increas-
ing exponentially as false positive rate decreases below 0.5, then
super-exponentially for false positive rate less than � 0:2 as shown
in Fig. S1 in the supplementary material. This dependence gives

FIG. 6. Classification comparison using the sequence of cell masks. (a) General flow of CNN-GRU. Sequences of masks are padded and used as inputs. CNN and GRU
layers use identical weights for each time step. (b) Confusion matrix for HL60 vs HL60d. (c) Confusion matrix for HL60 vs HL60n.

Biomicrofluidics ARTICLE scitation.org/journal/bmf

Biomicrofluidics 16, 014104 (2022); doi: 10.1063/5.0077432 16, 014104-11

© Author(s) 2022

https://www.scitation.org/doi/suppl/10.1063/5.0077432
https://www.scitation.org/doi/suppl/10.1063/5.0077432
https://aip.scitation.org/journal/bmf


context to the importance of the increased classification perfor-
mance we achieve. Using only morphological features, the classifier
performance would allow enrichment of � 9 times. Using the
mechanotyping data but with the inferior random forest classifier
would allow an enrichment of � 12 times. Finally, using the
CNN-GRU model would allow an enrichment of � 58 times (each
averaging over prediction performance numbers for HL60d and
HL60n, and assuming a rarity of 1/1000). Thus, the CNN-GRU
classifier has about five times the potential effectiveness of the
random forest classifier for future sorting applications.

IV. CONCLUSIONS

In summary, we show the application of a channel with an
undulating width that induces non-linear forces to individual cells
at high throughput. The cells undergo multiple deformations and
relaxations that reveal a multitude of information on cellular
mechanics. We explore how much information is revealed from
this dynamic and non-linear deformation process by comparing
the classification accuracies of traditional machine learning models,
with derived features, to deep learning models with automatic
feature extraction. For the traditional machine learning models, the
use of SHAP values unraveled mechanotyping parameters that con-
tributed most to classification, which can be useful in gaining
insight into how cell populations differ mechanically. At the cost of
interpretability, the deep learning models showed an appreciable
increase in classification accuracy, particularly in the case where the
two cell populations were very similar morphologically.

While the deep learning characterization and classification are
currently performed post hoc, similar deep learning models with
proper hardware can currently process � 2000 fps, leading to the
possibility for real-time sorting. We envision this work being incor-
porated into currently existing technologies, such as imaging flow
cytometry, and to be especially important for segregating rare cells,
including circulating tumor cells51 and even cancer stem cells.52

Future work will include optimizing channel designs with dif-
ferent widths, lengths, and shapes, as well as extending the deep
learning models to include unsupervised classification.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional information
concerning enrichment calculations, feature descriptions, and
model architectures and their performance.
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